This text is designed to teach the concepts and techniques of basic linear algebra as a rigorous mathematical subject. Besides computational proficiency, there is an emphasis on understanding definitions and theorems, as well as reading, understanding and creating proofs. A strictly logical organization, complete and exceedingly detailed proofs of every theorem, advice on techniques for reading and writing proofs, and a selection of challenging theoretical exercises will slowly provide the novice with the tools and confidence to be able to study other mathematical topics in a rigorous fashion.

Most students taking a course in linear algebra will have completed courses in differential and integral calculus, and maybe also multivariate calculus, and will typically be second-year students in university. This level of mathematical maturity is expected, however there is little or no requirement to know calculus itself to use this book successfully. With complete details for every proof, for nearly every example, and for solutions to a majority of the exercises, the book is ideal for self-study, for those of any age.

While there is an abundance of guidance in the use of the software system, Sage, there is no attempt to address the problems of numerical linear algebra, which are arguably continuous in nature. Similarly, there is little emphasis on a geometric approach to problems of linear algebra. While this may contradict the experience of many experienced mathematicians, the approach here is consciously algebraic. As a result, the student should be well-prepared to encounter groups, rings and fields in future courses in algebra, or other areas of discrete mathematics.